Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms
نویسندگان
چکیده
This paper proposes an idea of probabilistically using a scalarizing fitness function in evolutionary multiobjective optimization (EMO) algorithms. We introduce two probabilities to specify how often the scalarizing fitness function is used for parent selection and generation update in EMO algorithms. Through computational experiments on multiobjective 0/1 knapsack problems with two, three and four objectives, we show that the probabilistic use of the scalarizing fitness function improves the performance of EMO algorithms. In a special case, our idea can be viewed as the probabilistic use of an EMO scheme in single-objective evolutionary algorithms (SOEAs). From this point of view, we examine the effectiveness of our idea. Experimental results show that our idea improves not only the performance of EMO algorithms for multiobjective problems but also that of SOEAs for single-objective problems.
منابع مشابه
Optimization of Scalarizing Functions Through Evolutionary Multiobjective Optimization
This paper proposes an idea of using evolutionary multiobjective optimization (EMO) to optimize scalarizing functions. We assume that a scalarizing function to be optimized has already been generated from an original multiobjective problem. Our task is to optimize the given scalarizing function. In order to efficiently search for its optimal solution without getting stuck in local optima, we ge...
متن کاملA preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm
In this paper, we discuss the idea of incorporating preference information into evolutionary multiobjective optimization and propose a preference-based evolutionary approach that can be used as an integral part of an interactive algorithm. One algorithm is proposed in the paper. At each iteration, the decision maker is asked to give preference information in terms of her/his reference point con...
متن کاملExperimental Analysis of Design Elements of Scalarizing Functions-based Multiobjective Evolutionary Algorithms
In this paper we systematically study the importance, i.e., the influence on performance, of the main design elements that differentiate scalarizing functions-based multiobjective evolutionary algorithms (MOEAs). This class of MOEAs includes Multiobjecitve Genetic Local Search (MOGLS) and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D) and proved to be very successful in m...
متن کاملOn the Impact of Multiobjective Scalarizing Functions
Recently, there has been a renewed interest in decomposition-based approaches for evolutionary multiobjective optimization. However, the impact of the choice of the underlying scalarizing function(s) is still far from being well understood. In this paper, we investigate the behavior of different scalarizing functions and their parameters. We thereby abstract firstly from any specific algorithm ...
متن کاملGeneralized Multiobjective Evolutionary Algorithm Guided by Descent Directions
This paper proposes a generalized descent directions-guided multiobjective algorithm (DDMOA2). DDMOA2 uses the scalarizing fitness assignment in its parent and environmental selection procedures. The population consists of leader and non-leader individuals. Each individual in the population is represented by a tuple containing its genotype as well as the set of strategy parameters. The main nov...
متن کامل